Interactive Segmentation in Multimodal Medical Imagery using a Bayesian Transductive Learning Approach

نویسندگان

  • Noah Lee
  • Jesus Caban
  • Shahram Ebadollahi
  • Andrew Laine
چکیده

Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test set given a small portion of label information. In this paper we propose a novel algorithm for interactive segmentation using transductive learning and inference in conditional mixture naïve Bayes models (T-CMNB) with spatial regularization constraints. T-CMNB is an extension of the transductive naïve Bayes algorithm [1, 20] to the seminonparametric case. The multimodal mixture assumption on each covariate feature dimension and spatial regularization constraints allow us to explain more complex distributions required for spatial classification in multimodal imagery. To simplify the estimation we reduce the parameter space by assuming naïve conditional independence between the feature space and the class label. The naïve conditional independence assumption allows efficient inference of marginal and conditional distributions for large scale learning and inference [19]. We evaluate the proposed algorithm on multimodal MRI brain imagery using ROC statistics and provide preliminary results. The algorithm shows promising segmentation performance with a sensitivity and specificity of 90.37% and 99.74% respectively and compares competitively to alternative interactive segmentation schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Transductive Markov Random Fields for Interactive Segmentation in Retinal Disorders

In the realm of computer aided diagnosis (CAD) interactive segmentation schemes have been well received by physicians, where the combination of human and machine intelligence can provide improved segmentation efficacy with minimal expert intervention [1-3]. Transductive learning (TL) or semi-supervised learning (SSL) is a suitable framework for learning-based interactive segmentation given the ...

متن کامل

Texture Image Segmentation: An Interactive Framework Based on Adaptive Features and Transductive Learning

Texture segmentation is a long standing problem in computer vision. In this paper, we propose an interactive framework for texture segmentation. Our framework has two advantages. One is that the user can define the textures to be segmented by labelling a small part of points belonging to them. The other is that the user can further improve the segmentation quality through a few interactive mani...

متن کامل

Interactive Segmentation from 1-Bit Feedback

This paper presents an efficient algorithm for interactive image segmentation that responds to 1-bit user feedback. The goal of this type of segmentation is to propose a sequence of yes-or-no questions to the user. Then, according to the 1-bit answers from the user, the segmentation algorithm progressively revises the questions and the segments, so that the segmentation result can approach the ...

متن کامل

Interactive Image Segmentation with Latent Diversity

Interactive image segmentation is characterized by multimodality. When the user clicks on a door, do they intend to select the door or the whole house? We present an endto-end learning approach to interactive segmentation that tackles this ambiguity. Our architecture couples two convolutional networks. The first is trained to synthesize a diverse set of plausible segmentations that conform to t...

متن کامل

Effective Transductive Learning via PAC-Bayesian Model Selection

We study a transductive learning approach based on clustering. In this approach one constructs a diversity of unsupervised models of the unlabeled data using clustering algorithms. These models are then exploited to construct a number of hypotheses using the labeled data and the learner selects an hypothesis that minimizes a transductive PACBayesian error bound, which holds with high probabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009